翻訳と辞書 |
Robinson–Foulds metric : ウィキペディア英語版 | Robinson–Foulds metric The Robinson–Foulds metric is a way to measure the distance between unrooted phylogenetic trees. It is defined as (A + B) where A is the number of partitions of data implied by the first tree but not the second tree and B is the number of partitions of data implied by the second tree but not the first tree. It is also known as the symmetric difference metric. ==Explanation==
Given two unrooted trees of nodes and a set of labels (i.e., taxa) for each node (which could be empty, but only nodes with degree greater than or equal to three can be labeled by an empty set) the Robinson–Foulds metric finds the number of and operations to convert one into the other. The number of operations defines their distance. The authors define two trees to be the same if they are isomorphic and the isomorphism preserves the labeling. The construction of the proof is based on a function called , which contracts an edge (combining the nodes, creating a union of their sets). Conversely, expands an edge (decontraction), where the set can be split in any fashion. The function removes all edges from that are not in , creating , and then is used to create edges in to build . The number of operations in each of these procedures is equivalent to the number of edges in that are not in plus the number of edges in that are not in . The sum of the operations is equivalent to a transformation from to , or vice versa.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Robinson–Foulds metric」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|